

Interfacing with Power WinPLC

By Vanderhaegen Bart

Interfacing with Power WinPLC 2

1 Contents

1 Contents ..1

2 Introduction...3

3 Available functions..5

3.1 Direct K8000 I/O Routines ..5

3.1.1 I/O Channels ..5

3.1.2 DAC Channels ...6

3.1.3 DA Channels..6

3.1.4 AD Channels..7

3.2 Control commands...7

3.3 Runtime commands ...7

4 Programming examples ...8

4.1 Visual Basic...8

4.2 Visual Basic For Applications / Excel..10

4.3 Visual Basic For Applications / Word..12

4.4 Windows VB Scripting..13

4.5 HTML VB Script...14

4.6 HTML ASP Script ...16

4.7 Java ...18

5 Sample on “CallRoutine” ..19

This manuel is created by Vanderhaegen Bart

Interfacing with Power WinPLC 3

2 Introduction

Starting from version 6.1, WinPLC is capable to let other programs control certain functions.

WinPLC offers a set of functions that can be called from other programs. The picture belows

demonstrates this principe:

Figure 1: Some client programs are to WinPLC (acting as server)

In this image, WinPLC is showed as a server. There are 3 sample clients connected to the server:

� Excel Application. An excel worksheet
1
 could be used to collect some data from the

K8000 for historical graphs etc.

� Webserver for WinPLC. Someone could make a Webserver for WinPLC. When a

remote user clicks a certain hyperlink, the webserver could activate I/O channels through

WinPLC. Doing so, the webserver doesn’t have to access the K8000 card directly.

� Self-written GUI. WinPLC allows the creation of a custom graphical user interface. This

interface is limited. You could design your own graphical user interface in Visual Basic

(or any other programming language), and connect the button-actions to WinPLC.

The clients can use WinPLC (and the K8000) at the same time, and can be made with a minimal

amount of source code.

This manual contains examples and instructions to make other programs

communicate with WinPLC. The samples can also be downloaded from

my webpage: http://users.pandora.be/bartv/winplc/demos.zip

1
 VBA (Visual Basic for Applications) is a builtin language in Microsoft Excel. It allows you to program

applications for your Excel worksheet. An example application would be a button, that retrieves information from

the K8000 when the button is pressed.

WinPLC

Excel application

Webserver for WinPLC

Selfwritten GUI

Interfacing with Power WinPLC 4

The use of WinPLC as a server has many advantages:

� The controlling of the K8000 is centralized. Once WinPLC is setup to control the K8000

properly, other programs doesn’t have to worry connection settings.

� Multiple programs can control the K8000 simultane. Normally, the K8000 can only be

controlled by one program at the same time. More programs will cause interference to

each other.

� Coding for your custom applications can be minimized.

� The K8000 can be controlled from many programming languages, like C++, Visual

Basic, Visual Basic for Applications, Windows Scripts, ASP (Active Server Pages) and

even Java.

Interfacing with Power WinPLC 5

3 Available functions

WinPLC offers functions that can be divided in 3 groups.

3.1 Direct K8000 I/O Routines

The direct K8000 I/O Routines can control the I/O functions directly.

3.1.1 I/O Channels

� Public Sub setIOCh(Channel as Integer)

This method will set an I/O channel. You need to give an integer as the parameter: a

number between 1 and 64. (since there are 64 I/O channels, if you are using 4 K8000

cards).

� Public Sub clearIOCh(Channel as Integer)

This method will clear an I/O channel. You need to give an integer as the parameter: a

number between 1 and 64.

� Public Sub invertIOCh(Channel as Integer)

This method will invert an I/O channel. You need to give an integer as the parameter: a

number between 1 and 64.

� Public Sub setAllIOCh()

This method will set all I/O channels (from 1 to 64).

� Public Sub clearAllIOCh()

This method will clear all I/O channels (from 1 to 64)

� Public Sub invertAllIOCh()

This method will invert all I/O channels (from 1 to 64)

� Public Function getIOState(channel as Integer)

This function returns the state (1 or 0) of an I/O channel. (Channel is the channelnr

between 1 and 64)

Interfacing with Power WinPLC 6

3.1.2 DAC Channels

� Public Sub setDACch(channel as Integer, value as Integer)

This method will set a DAC channel to a certain value. You must specify the DAC

channel, a number between 1 and 32, and the value you want to send to that DAC value:

a number between 0 and 63.

� Public Sub setAllDACCh()

This method will set all DAC channels to the maximal value (63).

� Public Sub clearAllDACCh()

This method will clear all DAC channels to the minimal value (0).

� Public Sub getDACstate(channel as Integer)

This function returns the value of a DAC channel. The channel must be specified, and is

an integer between 1 and 32.

3.1.3 DA Channels

� Public Sub setDAch(channel as Integer, value as Integer)

This method will set a DA channel to a certain value. You must specify the DA channel,

a number between 1 and 4, and the value you want to send to that DAC value: a number

between 0 and 255.

� Public Sub setAllDACh()

This method will set all DA channels to the maximal value (255).

� Public Sub clearAllDACh()

This method will clear all DA channels to the minimal value (0).

� Public Function getDAstate(channel as Integer)

This function returns the value of a DA channel. The channel must be specified, and is an

integer between 1 and 4.

Interfacing with Power WinPLC 7

3.1.4 AD Channels

� Public Function getADstate(channel as Integer)

This function will return the value of an AD channel. The desired channel must be

specified, and is a value between 1 and 16.

3.2 Control commands

Control commands are used to get some information from WinPLC.

� Public Sub hideWinPLC()

Calling this method will hide WinPLC from your screen. You need to call the method

showWinPLC() to get WinPLC back.

� Public Sub showWinPLC()

Calling this method will show WinPLC on your screen. This only have affect if WinPLC

was hidden.

� Public Sub closeWinPLC()

Calling this method will close the opened WinPLC object. This method might trigger a

runtime error. But you may ignore this error.

3.3 Runtime commands

Runtime commands can be used to manipulate a running WinPLC file. These commands can be

used to interact with a program.

� Public Sub callRoutine(routinename As String)

Calling the subroutine “CallRoutine” will only have affect when a WinPLC file is running in

WinPLC. You can use this command to manipulate the execution of WinPLC: you can make

the execution jump to a certain subroutine. After the subroutine is completed, WinPLC will

proceed with its normal execution, and go back to the place where the execution was before

this method call.

Like I mentionned before, this instruction has no effect if WinPLC is not running a program.

The instruction also has no effect if you try to call a subroutine that is not present in the

current program.

This is a very powerful function for WinPLC. I created a sample that

demonstrates the use of this function. You can view this sample on page

18.

Interfacing with Power WinPLC 8

4 Programming examples

4.1 Visual Basic

The first WinPLC example is a dimmer program. The dimmer program is able

to communicate with WinPLC and monitor/change the value of high

precision analog output channel 1.

The program has 2 buttons: on and off. ON will set the DA channel to the

maximum value, while OFF will set the DA channel to the minimal value.

There is also a scrollbar that indicated the current value of the DA channel. Of

course, the scrollbar value can also be changed.

Without the scrollbar, this application could be made perfectly with WinPLC and its GUI

creator. The sample demonstrates the power of plugging your own graphical user interface into

WinPLC. Besides the more powerfull GUI, there is a second advantage: you can run more than

one of these programs at the same time.

Source Code

This is the source code for the Dimmer form in the Visual Basic application. The Application is

written in Visual Basic 5.0 Professional.

 ' declare winplc object that can be accessed from every sub

 Dim winplc As Object

 Private Sub Form_Load()

 ' program is started, load winplc object

 ' load winplc object

 Set winplc = CreateObject("PWinPLC.PowerWinPLC")

 ' set scrollbar values

 VScroll1.Min = 255

 VScroll1.Max = 0

 VScroll1.Value = winplc.getDAState(1)

 End Sub

 Private Sub cmd_on_Click()

 ' set da channel 1 to maximum

 winplc.setdach 1, 255

 VScroll1.Value = winplc.getDAState(1)

 End Sub

 Private Sub cmd_off_Click()

 ' set da channel 1 to minimum

 winplc.setdach 1, 0

 VScroll1.Value = winplc.getDAState(1)

 End Sub

Interfacing with Power WinPLC 9

Private Sub VScroll1_Change()

 ' change dac channel when scrollbar is moving

 On Error Resume Next

 winplc.setdach 1, VScroll1.Value

 End Sub

Private Sub VScroll1_Scroll()

 ' change dac channel when scrollbar is moving

 On Error Resume Next

 winplc.setdach 1, VScroll1.Value

 End Sub

 Private Sub Timer1_Timer()

 ' update scrollbar value

 On Error Resume Next

 VScroll1.Value = winplc.getDAState(1)

 End Sub

Interfacing with Power WinPLC 10

4.2 Visual Basic For Applications / Excel

Since Excel is a good program to create graphs, I made an example to make graphs of the K8000

AD channels. I made a certain worksheet, with a table and a graph. There is also a button, that

can be clicked.

Each click on the button will perform a mesurement of the 4 AD channels. The AD channels will

be read, and the results will be placed in the table. Where? Well, the table allows to show 5

mesurements. Each time you perform a mesurement, the data will be written in the next column

(in the order of 1 – 2 – 3 – 4 – 5). After column 5, column 1 will become overwritten.

For each mesurement, the current time and date will be displayed. The result will also be shown

in the table called “Graphs”.

Interfacing with Power WinPLC 11

Source code

Private Sub cmd_make_Click()

 ' declaration section

 Dim current_mesurement As Integer

 Dim letter As String

 ' get current mesurement number

 Range("C2").Select

 current_mesurement = Val(ActiveCell.FormulaR1C1)

 ' deterimine the number

 Select Case current_mesurement

 Case "1": letter = "C"

 Case "2": letter = "D"

 Case "3": letter = "E"

 Case "4": letter = "F"

 Case "5": letter = "G"

 End Select

 ' make connection with K8000

 Dim K8000 As Object

 Set K8000 = CreateObject("PWinPLC.PowerWinPLC")

 ' get the value of the channels

 Dim i As Integer

 For i = 1 To 4

 Range(letter & (i + 5)).Select

 ActiveCell.FormulaR1C1 = K8000.getadstate(i)

 Next i

 ' show time & date info

 Range(letter & (i + 5)).Select

 ActiveCell.FormulaR1C1 = Time

 Range(letter & (i + 6)).Select

 ActiveCell.FormulaR1C1 = Date

 ' update mesurement counter

 current_mesurement = current_mesurement + 1

 If current_mesurement > 5 Then current_mesurement = 1

 Range("C2").Select

 ActiveCell.FormulaR1C1 = current_mesurement

End Sub

Interfacing with Power WinPLC 12

4.3 Visual Basic For Applications / Word

This sample for Microsoft Word illustrates a report. Once you open the document2, it will

automatically be generated by Word.

Source code
3
 for report.doc

Sub autoOpen()

 Dim n As Integer

 Dim k8000 As Object

 Set k8000 = CreateObject("PWinPLC.PowerWinPLC")

 Selection.TypeText Text:="K8000 I/O report"

 Selection.HomeKey Unit:=wdLine, Extend:=wdExtend

 Selection.Font.Size = 18

 Selection.Font.Bold = wdToggle

 Selection.ParagraphFormat.Alignment = wdAlignParagraphCenter

 Selection.MoveDown Unit:=wdLine, Count:=1

 Selection.TypeParagraph

 Selection.TypeParagraph

 Selection.TypeParagraph

 Selection.ParagraphFormat.Alignment = wdAlignParagraphLeft

 Selection.TypeText Text:="Listing with the I/O channels:"

 Selection.TypeParagraph

 Selection.TypeParagraph

 For n = 1 To 16

 Selection.TypeText Text:="I/O " & n & ": " & Str(k8000.getIOState(n))

 Selection.TypeParagraph

 Next n

End Sub

This source code will generate a page with information on the I/O channels of the K8000 card.

The code is executed automatically when you open the file. This is because the code is put in the

autoOpen() sub. This is a subroutine that is called when Word is opening the document.

2
 This document uses Macro’s. When you open the file, Word will give you a warning that the file might contain

viruses. You can ignore the warning, and proceed with opening the file: it is NOT harmful.
3
 You can view the documents source code by pressing ALT+F11 in Word. This will open the Visual Basic editor

for Word.

Interfacing with Power WinPLC 13

4.4 Windows VB Scripting

Window VB scripts are textfiles with a .vbs extension. They are used for purposes like

maintanance. I have created 2 scripts: setallio.vbs and clearallio.vbs. setallio.vbs will set all I/O

channels, while clearallio.vbs will clear all I/O channels.

Source code
4
 for setallio.vbs

 ' create a new object

 set winplc=createobject("PWinPLC.PowerWinPLC")

 winplc.setAllIOch

 set winplc=nothing

Source code for clearallio.vbs

 ' create a new object

 set winplc=createobject("PWinPLC.PowerWinPLC")

 winplc.clearAllIOch

 set winplc=nothing

4
 You can just copy & paste the code into notepad, and save the code as a file with a .VBS extension. In Windows,

you can just run the .VBS file by double clicking it in explorer.

Interfacing with Power WinPLC 14

4.5 HTML VB Script

The K8000 can be controlled from webpages that you run locally on your computer, if you are

using Vbscript in those pages. Doing so, you can build a complete controlling system for your

K8000 page. It’s obviously you can’t place those files on other websites, since they need to

access components that are only available on your computer (client side programming). If you

want other users to be able to control your WinPLC & K8000 from another computer, you will

need to use something like ASP (Active Server Pages) and a webserver on your computer. This

webserver can serve webpages that are available on your computer. These webpages can contain

server-side ASP scripts, that access your computer: so users can make certain requests for your

computer through a webpage, the code is executed on your computer, and the webserver sends

the result to the user.

Principe of the code

I first created a standard webpage, according to the XHTML strict specifications. The document

contains a little text and a table. Then I added some VBScript coding: some code for the

initialisation of the WinPLC Object (the communication between webpage and WinPLC).

Then I added some code that calls a function to return the values of the AD channels 1 to 4. This

information is inserted into the HTML document. This information will be showed if you open

the HTM file, and renewed if you refresh the HTM file.

Interfacing with Power WinPLC 15

Source code for the webpage

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>K8000 AD Page</title>

<script type="text/vbscript">

 dim k8000

 set k8000=createobject("PWinPLC.PowerWinPLC")

</script>

</head>

<body>

<h1>Overview</h1>

<p>This page gives an overview of the value of the AD channels for K8000 card 0</p>

<table summary="i/o values" width="100">

<tr>

<td>AD 01</td>

<td><script type="text/vbscript">document.write k8000.getADState(1)</script></td>

</tr>

<tr>

<td>AD 02</td>

<td><script type="text/vbscript">document.write k8000.getADState(2)</script></td>

</tr>

<tr>

<td>AD 03</td>

<td><script type="text/vbscript">document.write k8000.getADState(3)</script></td>

</tr>

<tr>

<td>AD 04</td>

<td><script type="text/vbscript">document.write k8000.getADState(4)</script></td>

</tr>

<script type="text/vbscript">

 set k8000=nothing

</script>

</body>

</html>

Interfacing with Power WinPLC 16

4.6 HTML ASP Script

The previous HTML VBScript example showed that WinPLC can be controlled from webpages,

using VBScript client-side programming. But there is an important restriction: the webpages can

only be used on the computer where WinPLC is running.

ASP is the solution for this problem: it contains code that is executed on the server-side, not on

the client-side. When the visitor of the page tries to view the pages, some code will be executed

on the server (like interfacing with WinPLC, and exchange some data). The visitor will only see

the result.

Setting up the webserver

For realizing this test, I’ve used the IIS webserver from Microsoft (shipped with Microsoft

Windows NT, Windows 2000, Windows XP Professional).

I experienced (and still am experiencing) some problems with the configuration of the server.

This is because WinPLC was running under my Windows XP account, while the webserver is

running under another account. So there were some communcation problems, and they are not all

fixed yet.

Interfacing with Power WinPLC 17

Source code for test.asp

<%

' ASP Example file - By Vanderhaegen Bart

'

' bartv@pandora.be

'

' This page demonstrates how you can control the K8000 from a webpage,

' served on an IIS webserver (Microsoft Windows 2000, Windows XP). WinPLC

' must be installed correctly in order to get this sample to work. (some

' components need to be registered etc...).

'

' Place this file in one of the directories of your server!

%>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<link rel="stylesheet" type="text/css" href="test.css" />

<title>ASP Testpage</title>

</head>

<body>

<p>Overview of your AD channels:</p>

<%

' initialize the component. (PowerWinPLC must be installed correctly, or this

' line will give you an error).

Set myObj = Server.CreateObject("PWinPLC.PowerWinPLC")

%>

<table>

<tr>

<td>AD01</td>

<td><% response.write(myObj.getADState(1)) %></td>

</tr>

<tr>

<td>AD02</td>

<td><% response.write(myObj.getADState(2)) %></td>

</tr>

<tr>

<td>AD03</td>

<td><% response.write(myObj.getADState(3)) %></td>

</tr>

<tr>

<td>AD04</td>

<td><% response.write(myObj.getADState(4)) %></td>

</tr>

</table>

<%

' close the object?

Set myObj=nothing

%>

</body>

</html>

Interfacing with Power WinPLC 18

4.7 Java

WinPLC can also be controlled from Java (under Windows). I made a little test class that

demonstrates the use of Java: a little program will set all odd I/O channels when started.

Source code

import com.jacob.com.*;

import com.jacob.activeX.*;

public class Test {

 public static void main(String asArgs[]) throws Exception {

ActiveXComponent k8000Ax = new ActiveXComponent("PWinPLC.PowerWinPLC");

 Object k8000 = k8000Ax.getObject();

 for (int n=1;n<16;n+=2) {

 Dispatch.call(k8000, "setIOCh",new Variant(n));

 }

 }

}

The use of JACOB

Normally, you can’t communicate between Java and ActiveX components. That’s where JACOB

comes in: it allows you to make a bridge between Java and ActiveX. JACOB is available at

http://danadler.com/jacob. You need to download these files to your computer, so you can use

these extra classes to your Java project.

My test situation/Installing JACOB

I have created this example with RealJ and Jcreator (2 tools to create Java software). I am using

the Java Development Kit from Sun, which is installed under the folder C:\program files\jdk.

I unpacked the file jacobBin_17.zip from the JACOB website, and placed the files

jacob.dll and jacob.rar under the directory C:\Program Files\jdk\jre\lib\ext. Doing

so, the needed libraries can always be found.

Interfacing with Power WinPLC 19

5 Sample on “CallRoutine”

This sample demonstrates the CallRoutine function. I have

written an application in Visual Basic, which can be seen in

the picture. The application contains 3 buttons: Set Light

and Clear Light (they will set and clear the DA1 channel).

There is also a button called “Add 1 Second Pause”.

This program assumes that WinPLC is running the interrupt.plc sample file. The code for this

WinPLC program is shown below:

TIMESTEP = 150

TimeStep ON

LABEL WINPLC

 SETION 1000100010001000

 SETION 0100010001000100

 SETION 0010001000100010

 SETION 0001000100010001

GOTO WINPLC

SUB DO_INTERRUPT

 WAIT 1000

END SUB

The program has a endless loop (between the commands LABEL WINPLC and GOTO WINPLC). In this

loop, the program sends some lighteffects to the K8000 card.

The program has also a subroutine called “DO_INTERRUPT”. As you can see, the subroutine will

never be executed since there are no calls to it in the WinPLC program. But using the function

“CallRoutine”, DO_INTERRUPT can be called from other programs.

In my Visual Basic sample program, DO_INTERRUPT will be called if you press the “Add 1 Second

Pause” button. If you press the button once (while the WinPLC program runs), DO_INTERRUPT is

called and will wait for 1000 ms (1 second). Afterwards, the subroutine will be exited, and the

lightcomputer will resume with its effects.

If you press the “Add 1 Second Pause” button twice after each other, the

total delay time will be 2 seconds: if you call a new routine before the

current routine is finished, the new routine will run on top of the existing

routine. This is nesting. You can nest up to 100 routines. That should be

plenty.

